Menelaus teoremi, durum 1: DEF doğrsu ABC üçgeninin içinden geçer
Bu denklemde, örneğin AB, eksi değer alabilen doğru parçalarını simgeler. Örnek olarak AF / FB kesiri sadece DEF doğrusu AB kenarını kestiğinde artı değer alabilecek şekilde tanımlanmalıdır, çünkü sadece bu durumda iki doğru parçası aynı yönde ölçülmektedir ve bu durum diğer kesirler için de geçerlidir. Matematikçiler arasında bu teoremin yanlış olduğu üzerine süregelen bir şaka vardır (bunun yerine daha doğru olan Ceva teoremi nin kullanılması gerektiği söylenir).
İspatı
Menelaus teoremi, durum 2: DEF doğrusu ABC üçgeninin tamamen dışındadır
Aşağıda teoremin pek çok ispatından bir tanesi verilmiştir. Öncelikle, denklemin sol tarafının işareti kontrol edilebilir. DEF çizgisi ABC üçgeninin kenarlarını çift sayıda kesmelidir - üçgenin içinden geçerse iki kere (üst resim), ya da üçgenin içinden geçmezse sıfır kere (alt resim) (Pasch aksiyomu)-. Dolayısıyla daima tek sayıda eksi değer olacağından sonuç eksi olacaktır.
Daha sonra büyüklük kontrol edilebilir. DEF doğrusunu A, B ve C köşelerine birlestiren dikmeler oluşturalım. DEF'yi taban kabul edelim ve A, B ve C dikmelerinin yüksekliklerini a, b, ve c olarak tanımlayalım. Benzer üçgenler kullanılarak denklemin sol tarafı aşağıdaki gibi sadeleşir:
Batlamyus Almagest adlı eserinde Menelaus teoremini küresel trigonometri kuramının temeli olarak kullanmıştır.
0 yorum:
Yorum Gönder